Video salient object detection via spatiotemporal attention neural networks
نویسندگان
چکیده
منابع مشابه
Salient Region Detection in Video Using Spatiotemporal Visual Attention Model
Abstract Salient region detection is very useful in video analysis. A salient region detection method based on spatiotemporal visual attention model is proposed in this paper. Visual attention mechanism is used to generate saliency map of the image sequence. Spatial saliency map is computed in accordance with some predefined features including intensity, color and orientation. Temporal visual s...
متن کاملVideo Salient Object Detection Using Spatiotemporal Deep Features
This paper presents a method for detecting salient objects in videos where temporal information in addition to spatial information is fully taken into account. Following recent reports on the advantage of deep features over conventional handcrafted features, we propose the SpatioTemporal Deep (STD) feature that utilizes local and global contexts over frames. We also propose the SpatioTemporal C...
متن کاملContrast-Oriented Deep Neural Networks for Salient Object Detection
Deep convolutional neural networks have become a key element in the recent breakthrough of salient object detection. However, existing CNN-based methods are based on either patchwise (region-wise) training and inference or fully convolutional networks. Methods in the former category are generally timeconsuming due to severe storage and computational redundancies among overlapping patches. To ov...
متن کاملObject Detection in Video with Spatiotemporal Sampling Networks
We propose a Spatiotemporal Sampling Network (STSN) that uses deformable convolutions across time for object detection in videos. Our STSN performs object detection in a video frame by learning to spatially sample features from the adjacent frames. This naturally renders the approach robust to occlusion or motion blur in individual frames. Our framework does not require additional supervision, ...
متن کاملSalient Object Detection via Objectness Proposals
Salient object detection has gradually become a popular topic in robotics and computer vision research. This paper presents a real-time system that detects salient object by integrating objectness, foreground and compactness measures. Our algorithm consists of four basic steps. First, our method generates the objectness map via object proposals. Based on the objectness map, we estimate the back...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2020
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2019.09.064